Acta Crystallographica Section B
Structural
Science
ISSN 0108-7681

H. Toraya ${ }^{\text {a* }}$ and S. Yamazaki ${ }^{\text {b }}$
${ }^{\text {a }}$ Ceramics Research Laboratory, Nagoya Institute of Technology, Asahigaoka, Tajimi 507-0071, Japan, and ${ }^{\mathbf{b}}$ Basic Research Center, INAX Corporation, Tokoname, Aichi 479-0848, Japan

[^0]
Simulated annealing structure solution of a new phase of dicalcium silicate $\mathrm{Ca}_{2} \mathrm{SiO}_{4}$ and the mechanism of structural changes from \boldsymbol{a}-dicalcium silicate hydrate to a_{i}^{\prime}-dicalcium silicate via the new phase

A new phase of dicalcium silicate $\left(\mathrm{Ca}_{2} \mathrm{SiO}_{4}\right)$ was formed by heating α-dicalcium silicate hydrate $\left[\alpha-\mathrm{Ca}_{2}\left(\mathrm{SiO}_{4} \mathrm{H}\right) \mathrm{OH}=\alpha\right.$ $\left.\mathrm{C}_{2} \mathrm{SH}\right]$ at temperatures of $\sim 663-763 \mathrm{~K}$, and it was transformed into $\alpha_{\mathrm{L}}^{\prime}-\mathrm{Ca}_{2} \mathrm{SiO}_{4}\left(=\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}\right)$ above $\sim 1193 \mathrm{~K}$. The crystal structure of the new phase (hereafter called $x-\mathrm{C}_{2} \mathrm{~S}$) has been determined by simulated annealing and refined by the Rietveld method using synchrotron radiation powder diffraction data. The structure consists of isolated SiO_{4} tetrahedra and a three-dimensional CaO_{n} polyhedral network, forming a new structural type of dicalcium silicate. A structural change from $\alpha-\mathrm{C}_{2} \mathrm{SH}$ to $x-\mathrm{C}_{2} \mathrm{~S}$ is compelled by large displacements of SiO_{4} tetrahedra, accompanied by dehydration, in the direction perpendicular to the two-dimensional $\mathrm{Ca}(\mathrm{O}, \mathrm{OH})_{n}$ polyhedral network in $\alpha-\mathrm{C}_{2} \mathrm{SH}$. With increasing temperature, sizes of CaO_{n} polyhedra in $x-\mathrm{C}_{2} \mathrm{~S}$ become too large to confine Ca atoms at the sixfold to eightfold coordination sites. Then the structure of $x-\mathrm{C}_{2} \mathrm{~S}$ is transformed into $\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}$, having eightfold to tenfold coordination sites for the Ca atoms.

1. Introduction

Dicalcium silicates $\mathrm{Ca}_{2} \mathrm{SiO}_{4}$ (hereafter abbreviated $\mathrm{C}_{2} \mathrm{~S}$) have been known to have five polymorphs, designated by using the symbols $\alpha, \alpha_{\mathrm{H}}^{\prime}, \alpha_{\mathrm{L}}^{\prime}, \beta$ and γ in order of decreasing temperature for thermal stability (Eysel \& Hahn, 1970) (Fig. 1). The γ-form is stable at room temperature, whereas it is inactive against hydration. The β-form is unstable at room temperature without stabilization with additives or controlling particle size (Kriven, 1988). However, the β-form has hydration activity at room temperature, and it is a very important constituent of Portland cement. These polymorphs constitute, in general, a complicated phase system, and phase relationships, hydration properties, dusting phenomena etc. of these polymorphs have been very important subjects of studies in cement technologies. Crystal structures of individual phases and the transformation mechanism from one phase to another have been analyzed by many researchers (Midgley, 1952; Smith et al., 1965; Jost et al., 1977; Udagawa \& Urabe, 1978; Catti et al., 1984; Il'inets \& Bikbau, 1990), and they have been extensively discussed in cement chemistry as well as in mineralogy and crystallography (Eysel \& Hahn, 1970; Udagawa, 1980; Mumme et al., 1995).

Ishida et al. (1993) reported the formation of a new phase of dicalcium silicate during the dissociation process of α $\mathrm{Ca}_{2}\left(\mathrm{SiO}_{4} \mathrm{H}\right) \mathrm{OH}\left(\alpha-\mathrm{C}_{2} \mathrm{SH}\right)$ at temperatures of $\sim 663-763 \mathrm{~K}$ (Fig. 1). This new phase, preliminarily designated $x-\mathrm{C}_{2} \mathrm{~S}$, can be stable at room temperature, and it has hydration activity. The new phase can be transformed into $\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}$ by elevating the temperature to $1193-1233 \mathrm{~K}$ and further transformed into

Received 7 January 2002
Accepted 20 March 2002
$\beta-\mathrm{C}_{2} \mathrm{~S}$ on subsequent cooling. Unit-cell parameters and a space group of $x-\mathrm{C}_{2} \mathrm{~S}$ were determined by our group using synchrotron radiation powder diffraction data (Miyazaki et al., 1998). The unit-cell dimensions of x-C were much closer to those of $\alpha-\mathrm{C}_{2} \mathrm{SH}$ than to those of the $\alpha_{\mathrm{L}}^{\prime}-, \beta$ - and γ-forms. Moreover, there was no discernible change in shape of the plate-like crystalline particles observed by the scanning electron microscope during the dissociation process from $\alpha-\mathrm{C}_{2} \mathrm{SH}$ to $x-\mathrm{C}_{2} \mathrm{~S}$. Therefore, the crystal structure of $x-\mathrm{C}_{2} \mathrm{~S}$ was expected to be similar to that of $\alpha-\mathrm{C}_{2} \mathrm{SH}$. Because of the low crystallinity of the $x-\mathrm{C}_{2} \mathrm{~S}$ sample formed via hydrothermal and heating processes, the powder diffraction pattern could not be well resolved, and no structural solution has been obtained in spite of several trials to solve the crystal structure.

In the present study, the crystal structure of $x-\mathrm{C}_{2} \mathrm{~S}$ is determined using simulated annealing as a global minimization technique (Kirkpatrick et al., 1983) and synchrotron radiation powder diffraction data used in the previous study (Miyazaki et al., 1998). The present study is expected to be useful for understanding the structural relationships of dicalcium silicates and dicalcium silicate hydrates.

2. Experimental

A brief description of the experimental procedures, given below, may be useful for readers, although detailed descriptions are given by Miyazaki et al. (1998).

A powder specimen of $x-\mathrm{C}_{2} \mathrm{~S}$ was prepared by heating a powder of $\alpha-\mathrm{C}_{2} \mathrm{SH}$ at a temperature of 1073 K for 1 h in air.

Room Temperature
Figure 1
Phase relationship of the present new phase with the established $\mathrm{C}_{2} \mathrm{~S}$ system. Temperatures of the phase transitions and dissociation were those given by Kriven (1988) and Ishida et al. (1993), respectively.

Profile intensities were collected in the 2θ range $8-155^{\circ}$ (a step interval of 0.005°) by using a powder diffractometer with a multiple detector system (MDS) (Toraya et al., 1996) and monochromated synchrotron radiation $[\lambda=1.598$ (1) A] at the beamline BL- $4 \mathrm{~B}_{2}$ of the Photon Factory in Tsukuba, Japan. An asymmetric 2θ-scan mode at a fixed incident angle of 8° was employed in flat-specimen reflection geometry. The observed profile intensities were corrected for the decay of the incident beam of synchrotron radiation by using the intensities of an incident-beam monitor counter. Therefore, real intensity counts were scaled by a factor ranging from 0.82 to 1.22 .

The powder diffraction pattern on the low-angle side was first decomposed by the computer program PRO-FIT (version 3.00) for individual profile fitting (Toraya, 1986). The first 21 reflections thus resolved were used for automatic indexing using the computer program ITO (Visser, 1969). A unique solution of a monoclinic unit cell with dimensions of $a=8.213$, $b=9.806, c=9.793 \AA$ and $\beta=94.8^{\circ}$ was derived at a figure-ofmerit of 20.3 . The unit-cell dimensions were well in accordance with those recorded on the $h 0 l$ reciprocal lattice plane with a selected-area electron diffraction technique (JEOL, JEM2000-FX).

The whole diffraction pattern was decomposed using the computer program WPPF (version 3.00) for the whole-powder-pattern decomposition method based on the Pawley algorithm (Toraya, 1986; Pawley, 1981). Observed intensities of powder diffraction lines and those of selected-area electron diffraction spots on the $h 0 l$ plane were examined. Systematic absences of reflections having indices of $h 0 l$ with $l=2 n+1$ (n : integer) and $0 k 0$ with $k=2 n+1$ were observed, and a space group of $P 2_{1} / c$ was uniquely derived. Powder diffraction data (d-spacing, integrated intensities and $h k l$ indices) of $x-\mathrm{C}_{2} \mathrm{~S}$ are reported by Yamazaki \& Toraya (2001).

The unit-cell parameters of $x-\mathrm{C}_{2} \mathrm{~S}$ were refined by using the $W P P F$ and laboratory X-ray data (strictly monochromated Cu $K \alpha_{1}$ radiation) of a sample mixed with National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 640 b Si powder (Rasberry, 1987) as an internal standard reference material. Crystallographic data of the $x-\mathrm{C}_{2} \mathrm{~S}$ are given in Table 1.

3. Structure determination

Powder diffraction lines were all broadened, giving a full width at half-maximum (FWHM) of $0.093-1.60^{\circ}$ in the 2θ range $10-$ 150°. In the least-squares fitting for whole-powder-pattern decomposition, neighbouring reflections within an angular distance of $0.4 \times$ FWHM were grouped together in order to avoid strong parameter correlation and parameter divergence. In this case, 94% of reflections in the whole 2θ range must be equi-partitioned (see also Fig. 2 shown later). Therefore, application of direct methods was inadequate for solving the crystal structure of $x-\mathrm{C}_{2} \mathrm{~S}$, and simulated annealing as a global minimization technique (Kirkpatrick et al., 1983) was employed instead. The computer program DSS (Version 1.00) was recently written by one of the authors (HT) for directspace search using Monte Carlo methods and simulated

Table 1
Experimental details (Yamazaki \& Toraya, 2001).

Crystal data

Chemical formula $\quad \mathrm{Ca}_{2} \mathrm{SiO}_{4}$
Chemical formula weight
Cell setting, space group
a, b, c (A)
$\beta\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
$D_{x}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$
Radiation type
Wavelength (A)
Temperature (K)
$\mathrm{Ca}_{2} \mathrm{SiO}_{4}$
172.24
Monoclinic, $P 2_{1} / c$
8.2127 (5), 9.7930 (4), 9.7954 (5)
94.848 (5)
785.00 (7)

8
2.91

Synchrotron
1.598

298
annealing, and it was used for the present study. Details of $D S S$ will be reported elsewhere.

The $x-\mathrm{C}_{2} \mathrm{~S}$ contains 16 Ca atoms and eight SiO_{4} tetrahedra in a unit cell (Table 1). Moreover, an atomic ratio of $\mathrm{Si}: \mathrm{O}=1: 4$ in the chemical composition and knowledge about crystal structures of family minerals indicated that the eight SiO_{4} tetrahedra are isolated from each other. The space group $P 2_{1} / c$ has special equivalent positions ($2 a$ to $2 d$) only at the centre of symmetry, whereas the atomic configuration of the SiO_{4} tetrahedron is not centrosymmetric. Therefore, it was reasonable to assume that two SiO_{4} tetrahedra in an asymmetric unit occupy general equivalent positions ($4 e$) in the unit cell. This assumption was well in accordance with nuclear magnetic resonance (NMR) observations, which exhibited two sharp spectral lines indicating the presence of the two kinds of SiO_{4} tetrahedra in the unit cell (Ishida et al., 1993).

The possibility that Ca atoms occupy special equivalent positions could not be excluded in the first place. The presence

Figure 2
Fitting result of Rietveld refinement for $x-C_{2} S$. Filled squares and solid lines represent the observed and calculated profile intensities, respectively. Plots at the bottom of the diagram represent weighted difference plots by $w_{i}^{1 / 2}\left(Y_{o i}-Y_{c i}\right)$. Short vertical bars represent Bragg reflection positions of $x-\mathrm{C}_{2} \mathrm{~S}$ (upper) and $\beta-\mathrm{C}_{2} \mathrm{~S}$ (lower). The latter half of the pattern is presented on an enlarged scale.
of the Ca atom at the centre of symmetry is, however, only the case in $\gamma-\mathrm{C}_{2} \mathrm{~S}$ among the members of the $\mathrm{C}_{2} \mathrm{~S}$ family (Czaya, 1971). Moreover, it was much more probable that the symmetry of CaO_{n} polyhedra (where n is the number of coordinated O atoms) in $x-\mathrm{C}_{2} \mathrm{~S}$ was degraded from the centrosymmetric CaO_{6} or CaO_{8} polyhedral shape. Therefore, it was first assumed that the four Ca atoms in the asymmetric unit also occupy the general equivalent positions.

The starting model for the simulated annealing structure solution, using $D S S$ and profile intensity data in the 2θ range $10-50^{\circ}$, consisted of the four Ca atoms and the two SiO_{4} tetrahedra in the asymmetric unit, all of which were located at general equivalent positions. The four Ca atoms were treated as independent atoms, each of which had variable fractional coordinates of x, y and z. On the other hand, the SiO_{4} tetrahedra were treated as rigid molecules having a regular tetrahedral shape and an $\mathrm{Si}-\mathrm{O}$ distance of $1.64 \AA$. The SiO_{4} molecule was translated and rotated around the rotation axis through the centre of gravity of the molecule (atomic position of Si). The variable parameters for each SiO_{4} tetrahedron were the x, y and z coordinates for the centre of gravity, rotation angle ψ, and θ and φ angles for representing the direction of the rotation axis in the polar coordinate system. In each cycle of simulated annealing, 24 variable parameters, in total, were varied simultaneously for Monte Carlo moves within a space of the unit cell. Profile parameters, such as the U, V and W parameters in the Caglioti et al. (1958) formula, were employed from those refined with WPPF. Only a scale factor was refined in each simulated annealing cycle. The objective function used was the conventional $R_{w p}$ factor for profile intensities (Young, 1995). The so-called temperature parameter in simulated annealing was decreased following the scheme defined by $T_{i+1}=\rho T_{i}$, where T_{i} and T_{i+1} are the temperatures in the i th and $(i+1)$ th cycles, respectively, and ρ is the tuning parameter (Kirkpatrick et al., 1983). A reannealing technique was used in order to avoid falling into traps of local minima (Ingber, 1989), and it was demonstrated to operate very effectively. A solution with an $R_{w p}$ factor of 30.3% was obtained after 40000 simulated annealing cycles. A decrease of the maximum displacement for the Monte Carlo moves further reduced the $R_{w p}$ factor to 25.2%. The solution proved to be a correct structural solution in the subsequent Rietveld refinement.

4. Rietveld refinement

A profile intensity data set having a 2θ range $10-155^{\circ}$ was used for Rietveld refinement (Rietveld, 1969) with the computer program PFLS (version 5.00) (Toraya, 2000). It contained very weak reflections (2θ range $=32.3-32.8^{\circ}$) from the $\beta-\mathrm{C}_{2} \mathrm{~S}$ as a coexisting impurity. Therefore, the two phases, $x-\mathrm{C}_{2} \mathrm{~S}$ (1674 independent reflections) and $\beta-\mathrm{C}_{2} \mathrm{~S}$ (722 independent reflections), were assumed to be present in the Rietveld refinement.

The split-type pseudo-Voigt function was used for representing the profile shape. The refined profile parameters were six background parameters in the fifth-degree polynomial background function, the unit-cell parameters, the 2θ-zero

Table 2
Selected interatomic distances (\AA) and bond angles $\left({ }^{\circ}\right)$ of $x-\mathrm{C}_{2} \mathrm{~S}$.
Numbers in parentheses represent the estimated statistical uncertainties.

$\mathrm{Ca}(1) \mathrm{O}_{6}$		$\mathrm{Ca}(2) \mathrm{O}_{7}$	
$\mathrm{Ca}(1)-\mathrm{O}(1)^{\mathrm{i}}$	2.247 (6)	$\mathrm{Ca}(2)-\mathrm{O}(1)$	2.330 (6)
$\mathrm{Ca}(1)-\mathrm{O}(2)$	2.347 (7)	$\mathrm{Ca}(2)-\mathrm{O}(2)$	2.900 (7)
$\mathrm{Ca}(1)-\mathrm{O}(3)^{\text {iv }}$	2.699 (7)	$\mathrm{Ca}(2)-\mathrm{O}(4)^{\text {ii }}$	2.397 (6)
$\mathrm{Ca}(1)-\mathrm{O}(3)^{\text {iii }}$	2.283 (6)	$\mathrm{Ca}(2)-\mathrm{O}(5)$	2.441 (6)
$\mathrm{Ca}(1)-\mathrm{O}(5)$	2.250 (7)	$\mathrm{Ca}(2)-\mathrm{O}(7)^{\text {iii }}$	2.417 (5)
$\mathrm{Ca}(1)-\mathrm{O}(6)^{v}$	2.409 (7)	$\mathrm{Ca}(2)-\mathrm{O}(8)$	2.438 (6)
		$\mathrm{Ca}(2)-\mathrm{O}(8){ }^{\text {ii }}$	2.418 (7)
Average $\mathrm{Ca}(1)-\mathrm{O}$	2.373	Average $\mathrm{Ca}(2)-\mathrm{O}$	2.477
$\mathrm{O}(1)^{\mathrm{i}}-\mathrm{O}(2)$	3.018 (9)	$\mathrm{O}(1)-\mathrm{O}(2)$	2.619 (10)
$\mathrm{O}(1)^{\mathrm{i}}-\mathrm{O}(3)^{\text {iv }}$	2.582 (9)	$\mathrm{O}(1)-\mathrm{O}(4)^{\text {ii }}$	3.120 (8)
$\mathrm{O}(1)^{\mathrm{i}}-\mathrm{O}(5)$	3.771 (9)	$\mathrm{O}(1)-\mathrm{O}(7)^{\text {iii }}$	3.430 (8)
$\mathrm{O}(1)^{\mathrm{i}}-\mathrm{O}(6)^{\text {v }}$	3.553 (8)	$\mathrm{O}(1)-\mathrm{O}(8)^{\text {ii }}$	3.155 (8)
$\mathrm{O}(2)-\mathrm{O}(3)^{\text {iv }}$	3.863 (10)	$\mathrm{O}(2)-\mathrm{O}(4)^{\text {ii }}$	3.464 (8)
$\mathrm{O}(2)-\mathrm{O}(3)^{\text {iii }}$	3.250 (8)	$\mathrm{O}(2)-\mathrm{O}(5)$	3.303 (9)
$\mathrm{O}(2)-\mathrm{O}(5)$	3.303 (9)	$\mathrm{O}(4){ }^{\mathrm{ii}}-\mathrm{O}(8)$	3.119 (8)
$\mathrm{O}(3)^{\text {iv }}-\mathrm{O}(3)^{\text {iii }}$	3.419 (8)	$\mathrm{O}(4)^{\mathrm{ii}}-\mathrm{O}(8)^{\text {ii }}$	3.372 (8)
$\mathrm{O}(3)^{\mathrm{iv}}-\mathrm{O}(6)^{\mathrm{v}}$	3.168 (9)	$\mathrm{O}(5)-\mathrm{O}(7)^{\text {iii }}$	3.222 (8)
$\mathrm{O}(3)^{\text {iii }}-\mathrm{O}(5)$	3.477 (9)	$\mathrm{O}(5)-\mathrm{O}(8)$	2.713 (9)
$\mathrm{O}(3)^{\text {iii }}-\mathrm{O}(6)^{\mathrm{v}}$	3.215 (9)	$\mathrm{O}(7)^{\text {iii }}-\mathrm{O}(8)$	3.765 (7)
$\mathrm{O}(5)-\mathrm{O}(6)^{\text {v }}$	3.368 (9)	$\mathrm{O}(7)^{\text {iii }}-\mathrm{O}(8)^{\text {ii }}$	3.143 (8)
		$\mathrm{O}(8)-\mathrm{O}(8){ }^{\text {ii }}$	3.191 (8)
Average $\mathrm{O}-\mathrm{O}$	3.332	Average O-O	3.201
$\mathrm{Ca}(3) \mathrm{O}_{7}$		$\mathrm{Ca}(4) \mathrm{O}_{8}$	
$\mathrm{Ca}(3)-\mathrm{O}(3)^{\text {ix }}$	3.047 (6)	$\mathrm{Ca}(4)-\mathrm{O}(1)^{\mathrm{i}}$	2.173 (7)
$\mathrm{Ca}(3)-\mathrm{O}(4)^{\mathrm{i}}$	2.422 (6)	$\mathrm{Ca}(4)-\mathrm{O}(2)$	3.029 (5)
$\mathrm{Ca}(3)-\mathrm{O}(5)$	2.491 (6)	$\mathrm{Ca}(4)-\mathrm{O}(2)^{\text {vi }}$	2.255 (6)
$\mathrm{Ca}(3)-\mathrm{O}(6)$	2.382 (6)	$\mathrm{Ca}(4)-\mathrm{O}(3)^{\text {vii }}$	2.348 (7)
$\mathrm{Ca}(3)-\mathrm{O}(7)^{v}$	2.378 (7)	$\mathrm{Ca}(4)-\mathrm{O}(4)^{\text {xi }}$	3.164 (7)
$\mathrm{Ca}(3)-\mathrm{O}(7)^{\text {iii }}$	3.033 (6)	$\mathrm{Ca}(4)-\mathrm{O}(4)^{\text {viii }}$	2.773 (6)
$\mathrm{Ca}(3)-\mathrm{O}(8){ }^{\text {iii }}$	2.368 (6)	$\mathrm{Ca}(4)-\mathrm{O}\left(6{ }^{\text {iii }}\right.$	2.310 (8)
		$\mathrm{Ca}(4)-\mathrm{O}(8)^{\text {iii }}$	3.031 (6)
Average $\mathrm{Ca}(3)-\mathrm{O}$	2.589	Average $\mathrm{Ca}(4)-\mathrm{O}$	2.635
$\mathrm{O}(3)^{\mathrm{ix}}-\mathrm{O}(4)^{\mathrm{i}}$	2.792 (8)	$\mathrm{O}(1)^{\mathrm{i}}-\mathrm{O}(2)$	3.018 (9)
$\mathrm{O}(3)^{\mathrm{ix}}-\mathrm{O}(6)$	3.215 (9)	$\mathrm{O}(1)^{\mathrm{i}}-\mathrm{O}(4)^{\mathrm{xi}}$	2.690 (8)
$\mathrm{O}(3)^{\text {ix }}-\mathrm{O}(7)^{\mathrm{v}}$	3.721 (9)	$\mathrm{O}(1){ }^{\mathrm{i}}-\mathrm{O}(4)^{\text {viii }}$	3.120 (8)
$\mathrm{O}(4)^{\mathrm{i}}-\mathrm{O}(6)$	4.206 (7)	$\mathrm{O}(1)^{\mathrm{i}}-\mathrm{O}(8){ }^{\text {iii }}$	3.155 (8)
$\mathrm{O}(4)^{\mathrm{i}}-\mathrm{O}(7)^{\text {v }}$	3.465 (8)	$\mathrm{O}(2)-\mathrm{O}(3)^{\text {vii }}$	2.650 (8)
$\mathrm{O}(4)^{\mathrm{i}}-\mathrm{O}(7)^{\text {iii }}$	4.383 (8)	$\mathrm{O}(2)-\mathrm{O}(4)^{\mathrm{xi}}$	4.224 (9)
$\mathrm{O}(4){ }^{\mathrm{i}}-\mathrm{O}(8)^{\text {iii }}$	3.119 (8)	$\mathrm{O}(2)-\mathrm{O}(6)^{\text {iii }}$	4.130 (8)
$\mathrm{O}(5)-\mathrm{O}(6)$	2.503 (10)	$\mathrm{O}(2)-\mathrm{O}(8)^{\text {iii }}$	4.493 (8)
$\mathrm{O}(5)-\mathrm{O}(7)^{v}$	3.366 (8)	$\mathrm{O}(2)^{\text {vi }}-\mathrm{O}(3)^{\text {vii }}$	3.250 (8)
$\mathrm{O}(5)-\mathrm{O}(7)^{\text {iii }}$	3.222 (8)	$\mathrm{O}(2)^{\mathrm{vi}}-\mathrm{O}(4)^{\mathrm{xi}}$	3.464 (8)
$\mathrm{O}(5)-\mathrm{O}(8){ }^{\text {iii }}$	3.563 (7)	$\mathrm{O}(2)^{\mathrm{vi}}-\mathrm{O}(4)^{\text {viii }}$	2.692 (9)
$\mathrm{O}(6)-\mathrm{O}(7)^{\text {iii }}$	3.936 (8)	$\mathrm{O}(2)^{\text {vi }}-\mathrm{O}(6)^{\text {iii }}$	3.407 (10)
$\mathrm{O}(7)^{\mathrm{v}}-\mathrm{O}(8)^{\text {iii }}$	3.143 (8)	$\mathrm{O}(3)^{\text {vii }}-\mathrm{O}(4)^{\text {xi }}$	4.160 (9)
$\mathrm{O}(7)^{\text {iii }}-\mathrm{O}(8)^{\text {iii }}$	2.683 (9)	$\mathrm{O}(3)^{\text {vii }}-\mathrm{O}(6)^{\text {iii }}$	3.168 (9)
		$\mathrm{O}(4)^{\mathrm{xi}}-\mathrm{O}(4)^{\text {viii }}$	3.726 (8)
		$\mathrm{O}(4)^{\text {viii }}-\mathrm{O}(6)^{\text {iii }}$	3.835 (9)
		$\mathrm{O}(4)^{\text {viii }}-\mathrm{O}(8)^{\text {iii }}$	3.372 (8)
		$\mathrm{O}(6)^{\text {iii }}-\mathrm{O}(8){ }^{\text {iii }}$	2.591 (9)
Average $\mathrm{O}-\mathrm{O}$	3.380	Average $\mathrm{O}-\mathrm{O}$	3.397

$\mathrm{Si}^{2}(1) \mathrm{O}_{4}$		$\mathrm{Si}(2) \mathrm{O}_{4}$	
$\mathrm{Si}(1)-\mathrm{O}(1)^{\mathrm{x}}$	$1.582(7)$	$\mathrm{Si}(2)-\mathrm{O}(5)$	$1.628(7)$
$\mathrm{Si}(1)-\mathrm{O}()^{\mathrm{x}}$	$1.627(7)$	$\mathrm{Si}(2)-\mathrm{O}(6)$	$1.597(8)$
$\mathrm{Si}(1)-\mathrm{O}(3)$	$1.636(6)$	$\mathrm{Si}(2)-\mathrm{O}(7)$	$1.569(6)$
$\mathrm{Si}(1)-\mathrm{O}(4)$	$1.697(6)$	$\mathrm{Si}(2)-\mathrm{O}(8)$	$1.658(7)$
Average Si$(1)-\mathrm{O}$	1.636	Average Si(2)-O	1.613
$\mathrm{O}(1)^{\mathrm{x}}-\mathrm{O}(2)^{\mathrm{x}}$	$2.619(10)$	$\mathrm{O}(5)-\mathrm{O}(6)$	$2.503(10)$
$\mathrm{O}(1)^{\mathrm{x}}-\mathrm{O}(3)$	$2.582(9)$	$\mathrm{O}(5)-\mathrm{O}(7)$	$2.648(7)$
$\mathrm{O}(1)^{\mathrm{x}}-\mathrm{O}(4)$	$2.690(8)$	$\mathrm{O}(5)-\mathrm{O}(8)$	$2.713(9)$
$\mathrm{O}(2)^{\mathrm{x}}-\mathrm{O}(3)$	$2.650(8)$	$\mathrm{O}(6)-\mathrm{O}(7)$	$2.648(8)$

Table 2 (continued)

$\mathrm{Si}(1) \mathrm{O}_{4}$		$\mathrm{Si}(2) \mathrm{O}_{4}$	
$\mathrm{O}(2)^{\mathrm{x}}-\mathrm{O}(4)$	$2.692(9)$	$\mathrm{O}(6)-\mathrm{O}(8)$	$2.591(9)$
$\mathrm{O}(3)-\mathrm{O}(4)$	$2.792(8)$	$\mathrm{O}(7)-\mathrm{O}(8)$	$2.683(9)$
Average $\mathrm{O}-\mathrm{O}$	2.671	Average $\mathrm{O}-\mathrm{O}$	2.631
$\mathrm{O}(1)^{\mathrm{x}}-\mathrm{Si}(1)-\mathrm{O}(2)^{\mathrm{x}}$	$109.4(4)$	$\mathrm{O}(5)-\mathrm{Si}(2)-\mathrm{O}(6)$	$101.8(3)$
$\mathrm{O}(1)^{\mathrm{x}}-\mathrm{Si}(1)-\mathrm{O}(3)$	$106.7(4)$	$\mathrm{O}(5)-\mathrm{Si}(2)-\mathrm{O}(7)$	$111.8(4)$
$\mathrm{O}(1)^{\mathrm{x}}-\mathrm{Si}(1)-\mathrm{O}(4)$	$110.2(4)$	$\mathrm{O}(5)-\mathrm{Si}(2)-\mathrm{O}(8)$	$111.3(3)$
$\mathrm{O}(2)^{\mathrm{x}}-\mathrm{Si}(1)-\mathrm{O}(3)$	$108.6(4)$	$\mathrm{O}(6)-\mathrm{Si}(2)-\mathrm{O}(7)$	$113.5(3)$
$\mathrm{O}(2)^{\mathrm{x}}-\mathrm{Si}(1)-\mathrm{O}(4)$	$108.1(3)$	$\mathrm{O}(6)-\mathrm{Si}(2)-\mathrm{O}(8)$	$105.5(4)$
$\mathrm{O}(3)-\mathrm{Si}(1)-\mathrm{O}(4)$	$113.8(3)$	$\mathrm{O}(7)-\mathrm{Si}(2)-\mathrm{O}(8)$	$112.4(3)$
Average $\mathrm{O}-\mathrm{Si}(1)-\mathrm{O}$	109.5	Average O-Si$(2)-\mathrm{O}$	109.4

Symmetry codes: (i) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (ii) $1-x, 1-y, 1-z$; (iii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iv) $1+x, \frac{1}{2}$
$-y,-\frac{1}{2}+z$; (v) $1-x, 1-y,-z$; (vi) $2-x,-\frac{1}{2}+y, \frac{1}{2}-z$; (vii) $1+x, y, z$; (viii) $1-x,-\frac{1}{2}+$
$y,-\frac{1}{2}-z$; (ix) $x, \frac{1}{2}-y,-\frac{1}{2}+z ;$ (x) $-1+x, y, z$; (xi) $1+x, \frac{1}{2}-y, \frac{1}{2}+z$.
point, the U, V and W parameters, four η parameters on the low- and high-angle sides of the peak, four coefficients in the function of symmetrized harmonic expansion for preferred orientation correction (Järvinen, 1993), and the scale factors for the $x-\mathrm{C}_{2} \mathrm{~S}$ and $\beta-\mathrm{C}_{2} \mathrm{~S}$ phases. All structural parameters (x, y and z) for 14 atoms in an asymmetric unit of the $x-\mathrm{C}_{2} \mathrm{~S}$ were refined simultaneously together with the profile parameters, whereas those for $\beta-\mathrm{C}_{2} \mathrm{~S}$ were fixed at values given by Jost et al. (1977). Isotropic displacement parameters for individual atoms ($\left.U_{\text {iso }}^{\text {individ }}\right)$ were fixed at values that were obtained by averaging literature values for each kind of atom of $\alpha-\mathrm{C}_{2} \mathrm{SH}$ (Yano et al., 1993), and an overall displacement parameter $U_{\text {iso }}^{\text {overall }}$ was refined instead. All parameters were smoothly converged in the least-squares refinement using the weight function in the form $w_{i}=1 / Y_{o i}$ (where $Y_{o i}$ is the observed profile intensity at the i th step). The final reliability indices were $R_{w p}=11.6 \%, R_{p}=8.44 \%$ and goodness-of-fit $=2.28$ for the whole powder pattern, $R_{\text {Bragg }}=6.97 \%$ and $R_{F}=5.77 \%$ for $x-\mathrm{C}_{2} \mathrm{~S}$, and $R_{\text {Bragg }}=14.7 \%$ and $R_{F}=8.64 \%$ for $\beta-\mathrm{C}_{2} \mathrm{~S}$.

The weight ratio of $x-\mathrm{C}_{2} \mathrm{~S}$ to $\beta-\mathrm{C}_{2} \mathrm{~S}$, derived from the refined scale factors, was $0.965: 0.035$. Factors for the preferred orientation correction (applied only to $x-\mathrm{C}_{2} \mathrm{~S}$) were in the range from $0.65(h 00)$ to $1.60(0 k 0)$, indicating the presence of a rather strong preferred orientation along the plane normal of plate-like crystallites of $x-\mathrm{C}_{2} \mathrm{~S}$. A fitting result of the Rietveld refinement is shown in Fig. 2. Selected interatomic distances and bond angles of $x-\mathrm{C}_{2} \mathrm{~S}$ are given, together with symmetry codes, in Table 2. ${ }^{\mathbf{1}}$

Atomic scattering factor tables used in the present study for neutral atoms were taken from International Tables for X-ray Crystallography (1974, Vol. IV).

5. Results and discussion

5.1. Crystal structure of $x-\mathrm{C}_{2} \mathrm{~S}$

The crystal structure of $x-\mathrm{C}_{2} \mathrm{~S}$, shown in Fig. 3, consists of isolated SiO_{4} tetrahedra and a three-dimensional CaO_{n} polyhedral network. If O atoms within a distance of $3.2 \AA$ are

[^1]counted as coordinated to the Ca atoms, $n=6$ for $\mathrm{Ca}(1), n=7$ for $\mathrm{Ca}(2)$ and $\mathrm{Ca}(3)$, and $n=8$ for $\mathrm{Ca}(4)$. The $\mathrm{Ca}(4)-\mathrm{O}(4)^{\text {xi }}$ distance of 3.164 (7) \AA is rather long compared with the remaining $\mathrm{Ca}-\mathrm{O}$ distances. However, much longer $\mathrm{Ca}-\mathrm{O}$ distances of $3.18 \AA$ to $3.34 \AA$ will be found in $\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}$, which is the high-temperature form of $x-\mathrm{C}_{2} \mathrm{~S}$ (Udagawa et al., 1979). Valence sums $V\left[V=\sum s_{i}\right.$, where s_{i} is the bond strength defined by Brown \& Shannon (1973)], calculated for x - $\mathrm{C}_{2} \mathrm{~S}$, were $2.4,1.9,1.9,1.6,1.9,2.1,1.8$ and 1.9 for atoms $\mathrm{O}(1)$ to $\mathrm{O}(8)$, respectively; they were slightly larger than the average for $\mathrm{O}(1)$ and smaller for $\mathrm{O}(4)$. Although the contribution of the $\mathrm{Ca}(4)-\mathrm{O}(4)^{\mathrm{xi}}$ bond to V is not large, it was concluded that $\mathrm{O}(4)^{\mathrm{xi}}$ should be included as coordinated to the $\mathrm{Ca}(4)$ atom. α $\mathrm{C}_{2} \mathrm{SH}$, from which $x-\mathrm{C}_{2} \mathrm{~S}$ was formed at temperatures of $663-$ 763 K , has two $\mathrm{Ca}(\mathrm{O}, \mathrm{OH})_{6}$ polyhedra and another two $\mathrm{Ca}(\mathrm{O}, \mathrm{OH})_{7}$ polyhedra (Yano et al., 1993). On the other hand, $\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}$ has much higher coordination numbers of eight to ten for the Ca atoms (Udagawa et al., 1979). The average of all $\mathrm{Ca}-\mathrm{O}$ distances in $x-\mathrm{C}_{2} \mathrm{~S}(2.53 \AA)$ is also in between those in $\alpha-\mathrm{C}_{2} \mathrm{SH}(2.45 \AA)$ and $\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}(2.64 \AA)$. The increase/decrease in the coordination number and the $\mathrm{Ca}-\mathrm{O}$ distance compared with those of lower/higher temperature forms are well in accordance with a general trend observed in the $\mathrm{C}_{2} \mathrm{~S}$ family.

In Table 2, $\mathrm{O}-\mathrm{O}$ edges with lengths of $<3 \AA$ in CaO_{n} polyhedra are all shared with one of the two SiO_{4} tetrahedra in the asymmetric unit. All six edges of $\mathrm{Si}(1) \mathrm{O}_{4}$ are shared with neighbouring CaO_{n} polyhedra, while the number of shared edges is four in $\mathrm{Si}(2) \mathrm{O}_{4}$. Inter- $\mathrm{Ca}-\mathrm{Si}$ distances of $2.96-$ $3.25 \AA$, calculated from positional parameters, agree well with those of 2.91-3.22 \AA estimated from a geometrical model. These distances, together with close inspection of a threedimensional graphic display of the structure, confirm that the sharing style between the CaO_{n} and SiO_{4} polyhedra is the edge share. The $\mathrm{Si}(1) \mathrm{O}_{4}$ tetrahedron is larger than the $\mathrm{Si}(2) \mathrm{O}_{4}$

Figure 3
Crystal structure of $x-\mathrm{C}_{2} \mathrm{~S}$. Green spheres: Ca ; red spheres: Si; light blue spheres: O. Tetrahedra represent eight SiO_{4} molecules inside the unit cell.
tetrahedron because of the greater number of shared edges and, therefore, greater repulsive Coulomb force between the Ca and Si atoms.

The crystal structure of $x-\mathrm{C}_{2} \mathrm{~S}$ viewed along the c axis and that of $\alpha-\mathrm{C}_{2} \mathrm{SH}$ along the a axis (Yano et al., 1993) are shown in Fig. 4. We can see that tunnels having similar sizes and shapes are running in the direction perpendicular to the two diagrams. As will be discussed in $\S 5.2, x-\mathrm{C}_{2} \mathrm{~S}$ and $\alpha-\mathrm{C}_{2} \mathrm{SH}$ have an axial relationship in their unit-cell parameters, and these

Figure 4
Crystal structures of $x-\mathrm{C}_{2} \mathrm{~S}$ and $\alpha-\mathrm{C}_{2} \mathrm{SH}$, viewed along (a) the c axis of x $\mathrm{C}_{2} \mathrm{~S}$ and (b) the a axis of $\alpha-\mathrm{C}_{2} \mathrm{SH}$. Tunnels with pentagonal-shaped sections run perpendicular to the diagrams. Orange spheres in $x-\mathrm{C}_{2} \mathrm{~S}$ represent $\mathrm{Ca}(3)$ and $\mathrm{Ca}(4)$ atoms, belonging to the group of large polyhedra $\left(\mathrm{G}_{\mathrm{L}}\right)$ (§5.3.2). Blue spheres in $\alpha-\mathrm{C}_{2} \mathrm{SH}$ represent hydroxyls. The other spheres represent respective atoms as in Fig. 3.

Table 3
Distances (\AA) from Si atoms in $x-\mathrm{C}_{2} \mathrm{~S}$ to the nearest-neighbour Si atoms in $\alpha-\mathrm{C}_{2} \mathrm{SH}$.

The axial setting of the unit-cell is changed, and atoms in $x-\mathrm{C}_{2} \mathrm{~S}$ are translated by operations described in §5.2.2. $\Delta X, \Delta Y$ and ΔZ represent component distances along the a, b and d_{001} axes of $x-\mathrm{C}_{2} \mathrm{~S}$, respectively. Symmetry codes for Si atoms in $x-\mathrm{C}_{2} \mathrm{~S}$ are in accordance with those given in Table 2. Symmetry codes for $\alpha-\mathrm{C}_{2} \mathrm{SH}$, belonging to the space group $P 2_{1} 2_{1} 2_{1}$, are given by (i) $\frac{1}{2}-x$, $-y, \frac{1}{2}+z$; (ii) $\frac{1}{2}+x, \frac{1}{2}-y,-z$; (iii) $-x, \frac{1}{2}+y, \frac{1}{2}-z$. Atomic parameters of Si atoms in $\alpha-\mathrm{C}_{2} \mathrm{SH}$ were taken from those given by Yano et al. (1993).

Atoms in $x-\mathrm{C}_{2} \mathrm{~S}$	Atoms in $\alpha-\mathrm{C}_{2} \mathrm{SH}$	Distance	ΔX	ΔY	ΔZ
$\mathrm{Si}(1)$	$\mathrm{Si}(2)^{\mathrm{ii}}$	2.53	0.47	2.23	-1.09
$\mathrm{Si}(1)^{\mathrm{i}}$	$\mathrm{Si}(1)^{\mathrm{i}}$	1.12	-0.00	-0.60	-0.95
$\mathrm{Si}(1)^{\mathrm{ii}}$	$\mathrm{Si}(1)^{\mathrm{iii}}$	0.87	-0.26	0.80	0.22
$\mathrm{Si}(1)^{\text {iii }}$	$\mathrm{Si}(2)^{\mathrm{ii}}$	0.25	0.09	-0.21	0.08
$\mathrm{Si}(2)$	$\mathrm{Si}(1)^{\mathrm{ii}}$	2.32	0.37	-2.28	-0.14
$\mathrm{Si}(2)^{\mathrm{i}}$	$\mathrm{Si}(2)^{\mathrm{i}}$	3.04	-0.10	3.04	0.00
$\mathrm{Si}(2)^{\mathrm{ii}}$	$\mathrm{Si}(1)^{\mathrm{iii}}$	3.53	-0.22	3.39	0.94
$\mathrm{Si}(2)^{\text {iii }}$	$\mathrm{Si}(2)$	2.11	0.25	-1.93	0.81
Averages		1.97			

tunnels run in the common axial direction. In $\alpha-\mathrm{C}_{2} \mathrm{SH}$, the tunnels are sandwiched between the two-dimensional $\mathrm{Ca}(\mathrm{O}, \mathrm{OH})_{n}$ polyhedral network planes parallel to (001), and all hydroxyls (blue spheres in Fig. 4b) face the tunnels, which may be used as paths for hydroxyls/water molecules during dehydration.

5.2. Structural change from $a-\mathrm{C}_{2} \mathrm{SH}$ to $x-\mathrm{C}_{2} \mathrm{~S}$

5.2.1. Presence of pseudo-glide plane in $a-\mathrm{C}_{2} \mathbf{S H}$. All atoms in $\alpha-\mathrm{C}_{2} \mathrm{SH}$, which belongs to the space group $P 2_{1} 2_{1} 2_{1}$, are related by twofold screw axes (Yano et al., 1993). Now let us disregard discrimination between the atoms of the same kind but belonging to different asymmetric units. Then we can see that positions for most of the atoms in $\alpha-\mathrm{C}_{2} \mathrm{SH}$ can approximately be related to the pseudo- a glide planes, which are supposed to be present perpendicular to the c axis. Differences between the actual atomic position and the position generated by symmetry operation of the a-glide plane for the same kind of atoms are just ~ 0.01 in fractional coordinates. Only two O atoms and two hydroxyls $\left[\mathrm{O}(1)\right.$ at $\frac{1}{2}+x, 1-y, 1-z ; \mathrm{O}(2)$ at $1-$ $x, \frac{1}{2}+y, \frac{1}{2}-z ; \mathrm{O}(9)$ at $x, y, z ;$ and $\mathrm{O}(10)$ at $\frac{1}{2}-x, \frac{1}{2}-y, \frac{1}{2}+z$ in notation for atoms given by Yano et al. (1993)] among the 64 atoms in the unit cell apparently deviate (>0.01) from the equivalent positions of the a-glide plane. The pseudo- a-glide plane corresponds to the c-glide plane in $x-\mathrm{C}_{2} \mathrm{~S}$ on the assumed relationship in the unit-cell parameter of $a_{\alpha} \rightarrow c_{x}$, $b_{\alpha} \rightarrow d_{100 x}$ and $c_{\alpha} \rightarrow b_{x}$ between the two forms (Miyazaki et al., 1998). A selected-area electron diffraction pattern of the $h k 0$ reciprocal plane of $\alpha-\mathrm{C}_{2} \mathrm{SH}$ [Fig. 2(d) in Miyazaki et al. (1998)] also confirms the presence of the pseudo-glide plane: the intensities of reflections having indices of $h k 0$ with $h=2 n+$ 1 are systematically very weak compared with those with $h=$ $2 n$. Here it may be pointed out that the symbols a^{*} and b^{*} used for representing the reciprocal axes in Fig. 2(d) of Miyazaki et al. (1998) were mistakenly exchanged with each other.
5.2.2. Displacement of SiO_{4} tetrahedra. The crystal structure of $x-\mathrm{C}_{2} \mathrm{~S}$, projected along the a and b axes, and that of α -
$\mathrm{C}_{2} \mathrm{SH}$, along the b and c axes, are shown in Fig. 5. The structures of $x-\mathrm{C}_{2} \mathrm{~S}$ and $\alpha-\mathrm{C}_{2} \mathrm{SH}$, when viewed along the b axis of x $\mathrm{C}_{2} \mathrm{~S}$ (Fig. $5 a$) and the c axis of $\alpha-\mathrm{C}_{2} \mathrm{SH}$ (Fig. $5 b$), have a close resemblance regarding the dispositions of SiO_{4} tetrahedra. On the other hand, their difference is very clear when Fig. 5(c) (x $\mathrm{C}_{2} \mathrm{~S}$ along the a axis $)$ and Fig. $5(d)\left(\alpha-\mathrm{C}_{2} \mathrm{SH}\right.$ along the b axis $)$ are compared with each other. Then the crystal structure of x $\mathrm{C}_{2} \mathrm{~S}$ was superimposed on the structure of $\alpha-\mathrm{C}_{2} \mathrm{SH}$ by giving the orientation relationship of $a_{\alpha}=c_{x}, b_{\alpha}=d_{100 x}$ and $c_{\alpha}=b_{x}$ (§5.2.1). The structure of $x-\mathrm{C}_{2} \mathrm{~S}$ was further translated by distances of $-3.27,4.34$ and $3.71 \AA$ along the a_{α}, b_{α} and c_{α} axes, respectively, in order to obtain the closest approach of Si atoms between the two structures. The relative distances between the two neighbouring Si atoms, one belonging to x $\mathrm{C}_{2} \mathrm{~S}$ and the other to $\alpha-\mathrm{C}_{2} \mathrm{SH}$, are given in Table 3. In their calculation, thermal expansion of the unit cell of $x-\mathrm{C}_{2} \mathrm{~S}$ at elevated temperatures and shrinkage of the unit cell of α $\mathrm{C}_{2} \mathrm{SH}$ during the dissociation process were ignored. The SiO_{4} tetrahedra are supposed to behave as rigid molecules during the dissociation process. They would be displaced primarily along the direction of the c axis in $\alpha-\mathrm{C}_{2} \mathrm{SH}$ (the b axis in x $\mathrm{C}_{2} \mathrm{~S}$), and undergo some degree of rotation, in order to fill the space induced by the dehydration of $\alpha-\mathrm{C}_{2} \mathrm{SH}$ (Fig. 5 and Table 3). It should be noted that two SiO_{4} tetrahedra $\left[\mathrm{Si}(1)^{\mathrm{iii}}\right.$ and $\mathrm{Si}(2)^{\mathrm{i}}$ in $\left.\alpha-\mathrm{C}_{2} \mathrm{SH}\right]$ and their counterparts [$\mathrm{Si}(1)^{\mathrm{ii}}$ and $\left.\mathrm{Si}(2)\right]$ are largely displaced by $\sim 2 \AA$ to $3 \AA$ in the opposite directions

Figure 5
Crystal structures of $x-\mathrm{C}_{2} \mathrm{~S}$ and $\alpha-\mathrm{C}_{2} \mathrm{SH}$, viewed along (a) the b axis of x $\mathrm{C}_{2} \mathrm{~S},(b)$ the c axis of $\alpha-\mathrm{C}_{2} \mathrm{SH},(c)$ the a axis of $x-\mathrm{C}_{2} \mathrm{~S}$ and (d) the b axis of $\alpha-\mathrm{C}_{2} \mathrm{SH}$. Arrows in (d) represent displacements of SiO_{4} tetrahedra, expected from a comparison of both structures. Spheres represent respective atoms as in Figs. 3 and 4.

Table 4
Ratios (\%) of the number of edges shared between the $\mathrm{Ca}-\mathrm{Ca}$ and $\mathrm{Ca}-$ Si polyhedra to the total number of edges in $x-\mathrm{C}_{2} \mathrm{~S}$ and related compounds.

		$\alpha-\mathrm{C}_{2} \mathrm{SH}$	$\gamma-\mathrm{C}_{2} \mathrm{~S}$	$x-\mathrm{C}_{2} \mathrm{~S}$	$\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}$
CaO_{n}	$\mathrm{Ca}-\mathrm{Ca}$	32.0	25.0	42.1	63.4
	$\mathrm{Ca}-\mathrm{Si}$	6.0	12.5	17.5	17.9
	Total	38.0	37.5	59.6	81.3
SiO_{4}	$\mathrm{Ca}-\mathrm{Si}$	25.0	50.0	83.3	83.3

from each other along the c axis of $\alpha-\mathrm{C}_{2} \mathrm{SH}$ (arrows in Fig. 5d). The SiO_{4} tetrahedra in $\alpha-\mathrm{C}_{2} \mathrm{SH}$ are displaced as if the pseudo-a-glide plane, which is taken over as the c-glide plane in $x-\mathrm{C}_{2} \mathrm{~S}$, governs them.
5.2.3. $\mathrm{CaO}_{\boldsymbol{n}}$ polyhedral networks. Ratios (in \%) of the number of shared edges to the total number of edges of CaO_{n} and SiO_{4} polyhedra are given for $x-\mathrm{C}_{2} \mathrm{~S}, \alpha-\mathrm{C}_{2} \mathrm{SH}, \alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}$ and $\gamma-\mathrm{C}_{2} \mathrm{~S}$ in Table 4. In the crystal structure of $\alpha-\mathrm{C}_{2} \mathrm{SH}$, the twodimensional $\mathrm{Ca}(\mathrm{O}, \mathrm{OH})_{n}$ polyhedral network planes run parallel to (001) (Yano et al., 1993), and they are connected vertically with rows of the SiO_{4} tetrahedra, running parallel to the c axis (Fig. 4b). Therefore, only a quarter of the edges of the SiO_{4} tetrahedra are shared with the two $\mathrm{Ca}(\mathrm{O}, \mathrm{OH})_{7}$ polyhedra. By reflecting such a structural feature of $\alpha-\mathrm{C}_{2} \mathrm{SH}$, the average ratio of shared edges for $\mathrm{Ca}(\mathrm{O}, \mathrm{OH})_{n}$ polyhedra is just 38%. On the other hand, the SiO_{4} tetrahedra in $x-\mathrm{C}_{2} \mathrm{~S}$ are surrounded by CaO_{n} polyhedra composing the three-dimensional network as shown in Fig. 3 (§5.1), and the ratio of shared edges is $\sim 60 \%$.

Relative distances from one Ca atom in $\alpha-\mathrm{C}_{2} \mathrm{SH}$ to the nearest-neighbour Ca atom in $x-\mathrm{C}_{2} \mathrm{~S}$, calculated by the same scheme as described in $\S 5.2 .2$, are in the range $1.0 \AA$ to $2.7 \AA$, giving an average distance of $1.96 \AA$. The components of the average relative distances between the two Ca atoms along the directions of the a_{α}, b_{α} and c_{α} axes are 1.1, 0.6 and $1.1 \AA$, respectively. Structural change of the polyhedral network from two-dimensions to three-dimensions in $\alpha-\mathrm{C}_{2} \mathrm{SH} \rightarrow x-\mathrm{C}_{2} \mathrm{~S}$ will be associated with the large displacements of the SiO_{4} tetrahedra in the direction perpendicular to the two-dimensional polyhedral network in $\alpha-\mathrm{C}_{2} \mathrm{SH}$ (Figs. 4 and 5).

5.3. Structural change from $x-\mathrm{C}_{2} S$ to $a_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}$

5.3.1. Size gaps between the $\mathrm{CaO}_{\boldsymbol{n}}$ and SiO_{4} polyhedra. The crystal structures of the five $\mathrm{C}_{2} \mathrm{~S}$ polymorphs that have been known up to the present are classified into two structural types. One is the olivine-type, to which the γ-form belongs, and the other is the $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$-type, to which the remaining four high-temperature forms of $\alpha, \alpha_{\mathrm{H}}^{\prime}, \alpha_{\mathrm{L}}^{\prime}$ and β belong (Udagawa, 1980). The crystal structure of $\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}$ is a superstructure of the β - $\mathrm{K}_{2} \mathrm{SO}_{4}$-type, and it has an orthorhombic unit cell with dimensions of $a=6.812(3) \times 3, b=9.339(2)$ and $c=$ 5.553 (2) Å, containing 12 units of chemical formula $\mathrm{Ca}_{2} \mathrm{SiO}_{4}$ (Udagawa et al., 1979). It is well known that the olivine-type and $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$-type structures can be derived from the hexagonal closest packing (h.c.p.) of O atoms (Bragg \& Claringbull, 1965). In ideal geometry, 16 octahedral sites and 32
tetrahedral sites are available for unit cells of the olivine-type and $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$-type structures (the number of chemical formula unit $=4$ in this case). In $\gamma-\mathrm{C}_{2} \mathrm{~S}$, the Ca atoms occupy half of the available octahedral sites, while the shapes of the CaO_{6} octahedra are largely distorted because of the small size of the SiO_{4} tetrahedra compared with that in the ideal h.c.p. geometry. With increasing temperature, the size of the CaO_{n} polyhedra is greatly increased by thermal expansion while the size of the SiO_{4} tetrahedra is almost unchanged (Smyth \& Hazen, 1973). In the crystal structures of the high-temperature forms in the $\mathrm{C}_{2} \mathrm{~S}$ family, the size differences between the CaO_{n} and SiO_{4} polyhedra at the formation temperatures of these forms become much greater than those in the γ-form. Therefore, in $\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}$, half of the Ca atoms in the unit cell occupy tenfold coordination sites as in the case of $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$ (McGinnety, 1972). In this case, just four octahedral sites in a sub-cell unit (12 octahedral sites in a super-lattice of $\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}$) are left for the remaining half of Ca atoms. The sixfold coordination sites are, however, intolerably small for the large Ca atoms, and SiO_{4} tetrahedra are shifted, rotated and distorted in order to squeeze the Ca atoms into these sites. Then the coordination number for these sites is increased to sevenfold to ninefold, and is eightfold in the case of $\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}$.
5.3.2. $\mathrm{CaO}_{\boldsymbol{n}}$ polyhedral networks in $\boldsymbol{x}-\mathrm{C}_{2} \mathrm{~S}$ to $\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S} . \mathrm{CaO}_{n}$ polyhedra in dicalcium silicates can be divided evenly, according to their sizes, into two groups, G_{S} (small polyhedra) and G_{L} (large polyhedra). Classification of the CaO_{n} polyhedra in $x-\mathrm{C}_{2} \mathrm{~S}$ and $\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}$ into the two groups is given in Table 5, together with information about the first-neighbour CaO_{n} polyhedra around the individual CaO_{n} polyhedra. Firstly, we can see that the size difference between the two groups is increased by increasing the transformation temperature of individual phases: the differences in the average $\mathrm{Ca}-\mathrm{O}$ distance between the two groups G_{S} and G_{L} are $0.03 \AA$ in the room-temperature form of $\gamma-\mathrm{C}_{2} \mathrm{~S}$ (Udagawa et al., 1980), $0.07 \AA$ in $\alpha-\mathrm{C}_{2} \mathrm{SH}$ (Yano et al., 1993), $0.19 \AA$ in x $\mathrm{C}_{2} \mathrm{~S}$ and $0.27 \AA$ in $\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}$ (Udagawa et al., 1979). Secondly, in both structures of $x-\mathrm{C}_{2} \mathrm{~S}$ and $\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}$, smaller CaO_{n} polyhedra are surrounded primarily by larger ones, and vice versa for larger polyhedra (Table 5). For example, a small $\mathrm{Ca}(1) \mathrm{O}_{6}$ polyhedron in $x-\mathrm{C}_{2} \mathrm{~S}$ is surrounded by five large CaO_{n} polyhedra (orange spheres in Fig. 4a) and three small ones (green spheres). In the case of $\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}$, a small $\mathrm{Ca}(4) \mathrm{O}_{8}$ polyhedron is surrounded by six large polyhedra and only two small ones. Such an alternate arrangement of large and small CaO_{n} polyhedra in $x-\mathrm{C}_{2} \mathrm{~S}$ and $\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}$ will achieve denser packing than expanding evenly all the CaO_{n} polyhedra, and it may be thermally more stable.
5.3.3. Structural change from $x-\mathrm{C}_{2} \mathrm{~S}$ to $\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}$. The large gap between the available polyhedral space and the actual size of CaO_{n} polyhedra at high temperatures will be a cause for inducing the transformation from $x-\mathrm{C}_{2} \mathrm{~S}$ to $\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}$. With elevating the temperature above $1193 \mathrm{~K}, \mathrm{Ca}(1) \mathrm{O}_{6}$ and $\mathrm{Ca}(2) \mathrm{O}_{7}$ polyhedra in $x-\mathrm{C}_{2} \mathrm{~S}$ are supposed to change the coordination number to eightfold, and $\mathrm{Ca}(3) \mathrm{O}_{7}$ and $\mathrm{Ca}(4) \mathrm{O}_{8}$ to tenfold. The SiO_{4} tetrahedra will again behave like rigid molecules, and the rotations of SiO_{4} tetrahedra will achieve

Table 5
The numbers of first-neighbour CaO_{n} polyhedra around respective CaO_{n} polyhedra.
Inter $\mathrm{Ca}-\mathrm{Ca}$ distances were all within $43 \AA$. Notation for atoms in $\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}$ given by Udagawa et al. (1979) is used.

$x-\mathrm{C}_{2} \mathrm{~S}$			$\mathrm{G}_{\text {S }}$			G_{L}		
		$\mathrm{Ca}-\mathrm{O}$	$\mathrm{Ca}(1)$	$\mathrm{Ca}(2)$		$\mathrm{Ca}(3)$	$\mathrm{Ca}(4)$	
G_{S}	$\mathrm{Ca}(1)$	2.373	1	2		2	3	
	$\mathrm{Ca}(2)$	2.477	2	1		3	2	
G_{L}	$\mathrm{Ca}(3)$	2.589	2	3		0	1	
	$\mathrm{Ca}(4)$	2.635	3	2		1	0	
$\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}$			$\mathrm{Ca}(4)$	$\mathrm{Ca}(5)$	$\mathrm{Ca}(6)$	$\mathrm{Ca}(1)$	$\mathrm{Ca}(2)$	$\mathrm{Ca}(3)$
$\mathrm{G}_{\text {S }}$	$\mathrm{Ca}(4)$	2.495	0	1	1	0	3	3
	$\mathrm{Ca}(5)$	2.500	1	0	1	3	2	1
	$\mathrm{Ca}(6)$	2.513	1	1	0	3	1	2
$\mathrm{G}_{\text {L }}$	$\mathrm{Ca}(1)$	2.775	0	3	3	0	2	0
	$\mathrm{Ca}(2)$	2.757	3	2	1	2	0	0
	$\mathrm{Ca}(3)$	2.781	3	1	2	0	0	2

their coordination is rearranged, forming the three-dimensional CaO_{n} network in x $\mathrm{C}_{2} \mathrm{~S}$. The isolated SiO_{4} tetrahedra and the three-dimensional network are common structural features observed in all members of the $\mathrm{C}_{2} \mathrm{~S}$ family.

The crystal structures of $\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}$ and the remaining three high-temperature forms of $\alpha, \alpha_{\mathrm{H}}^{\prime}$ and β belong to the $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$-type. Dispositions of the SiO_{4} and CaO_{n} polyhedra in $x-\mathrm{C}_{2} \mathrm{~S}$ are similar to those in $\alpha_{\mathrm{L}}^{\prime}-$ $\mathrm{C}_{2} \mathrm{~S}$, and large and small CaO_{n} polyhedra are alternately arranged in both structures. However, the SiO_{4} tetrahedra in $x-\mathrm{C}_{2} \mathrm{~S}$ share only their edges with neighbouring CaO_{n} polyhedra, whereas the SiO_{4} tetrahedra in $\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}$ share also their corners and faces. The crystal structure of $x-\mathrm{C}_{2} \mathrm{~S}$ also differs from the olivine-type, to which the
the change of the coordination number of CaO_{n} polyhedra. In $x-\mathrm{C}_{2} \mathrm{~S}$, as has been mentioned in $\S 5.1$, the $\mathrm{Si}(1) \mathrm{O}_{4}$ and $\mathrm{Si}(2) \mathrm{O}_{4}$ tetrahedra have six and four shared edges with CaO_{n} polyhedra, respectively. In $\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}$, three kinds of SiO_{4} tetrahedra in the asymmetric unit equally share one face, three edges and one corner with neighbouring CaO_{n} polyhedra just as in the β $\mathrm{K}_{2} \mathrm{SO}_{4}$-type structure. The small tunnel space around the $\mathrm{Si}(2) \mathrm{O}_{4}$ tetrahedra in $x-\mathrm{C}_{2} \mathrm{~S}$ is collapsed in $\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}$. Then the ratio of shared edges for $\mathrm{Ca}-\mathrm{Ca}$ is increased by $\sim 20 \%$ in $\alpha_{\mathrm{L}}^{\prime}-$ $\mathrm{C}_{2} \mathrm{~S}$ (Table 4), and the edges of nearly 80% of CaO_{n} polyhedra are shared with surrounding polyhedra. Accompanied by this structural change, the density of $\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}$ is increased by $0.3 \mathrm{~g} \mathrm{~cm}^{-3}$ compared with that of $x-\mathrm{C}_{2} \mathrm{~S}$.

Both $x-\mathrm{C}_{2} \mathrm{~S}$ and $\gamma-\mathrm{C}_{2} \mathrm{~S}$ are directly transformed into $\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}$. However, the transformation temperature for $x-\mathrm{C}_{2} \mathrm{~S}$ is $\sim 373 \mathrm{~K}$ higher than that for $\gamma-\mathrm{C}_{2} \mathrm{~S}$, in which all Ca atoms are in the sixfold coordination. Both transformations are irreversible, and $\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}$ is always transformed into $\beta-\mathrm{C}_{2} \mathrm{~S}$ when it is cooled (Fig. 1). A reason for these irreversible transformations may be structural affinity in that $\beta-\mathrm{C}_{2} \mathrm{~S}$ belongs to the same β $\mathrm{K}_{2} \mathrm{SO}_{4}$-type structure as $\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}$.

6. Summary

The new phase of dicalcium silicate, $x-\mathrm{C}_{2} \mathrm{~S}$, was formed by heating $\alpha-\mathrm{C}_{2} \mathrm{SH}$ at temperatures of $\sim 663-763 \mathrm{~K}$, and it was transformed into $\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}$ above $\sim 1193 \mathrm{~K}$ (Ishida et al., 1993) (Fig. 1). Its crystal structure has been determined by simulated annealing and refined by the Rietveld method using synchrotron radiation powder diffraction data. In $\alpha-\mathrm{C}_{2} \mathrm{SH}$, the $\mathrm{Ca}(\mathrm{O}, \mathrm{OH})_{n}$ polyhedra constitute the two-dimensional polyhedral networks, and the isolated SiO_{4} tetrahedra connect the networks three-dimensionally. The small tunnels run parallel to the network planes, and they are supposed to be used for passing hydroxyls/water molecules during dehydration. In order to fill the space induced by dehydration, the SiO_{4} tetrahedra are largely displaced in the direction perpendicular to the network planes. The Ca atoms are also displaced, and
$\gamma-\mathrm{C}_{2} \mathrm{~S}$ belongs, and, therefore, it forms a new structural type in the $\mathrm{C}_{2} \mathrm{~S}$ family. With elevating temperatures, the sizes of the CaO_{n} polyhedra in $x-\mathrm{C}_{2} \mathrm{~S}$ become too large to confine the Ca atoms in the sixfold to eightfold coordination, and the Ca atoms take the eightfold to tenfold coordination in $\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S} . \alpha_{\mathrm{L}^{-}}^{\prime}$ $\mathrm{C}_{2} \mathrm{~S}$ is further transformed into $\beta-\mathrm{C}_{2} \mathrm{~S}$ on subsequent cooling. The structures of $\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}$ and $\beta-\mathrm{C}_{2} \mathrm{~S}$ are based on the same structural type of $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$, and structural affinity of these structures may be a reason why the transformation of $x-\mathrm{C}_{2} \mathrm{~S}$ to $\alpha_{\mathrm{L}}^{\prime}-\mathrm{C}_{2} \mathrm{~S}$ is irreversible.

The present study is financially supported by the Ministry of Education, Science, Sports and Culture (Grant-in-Aid for Exploratory Research, 12875123).

References

Bragg, L. \& Claringbull, G. F. (1965). Crystal Structures of Minerals, pp. 96-99 and pp. 173-175. London: Bell.
Brown, I. D. \& Shannon, R. D. (1973). Acta Cryst. A29, 266-282.
Caglioti, G., Paoletti, A. \& Ricci, F. P. (1958). Nucl. Instrum. 3, 223228.

Catti, M., Gazzoni, G. \& Ivaldi, G. (1984). Acta Cryst. B40, 537-544.
Czaya, R. (1971). Acta Cryst. B27, 848-849.
Eysel, W. \& Hahn, T. (1970). Z. Kristallogr. 131, 322-341.
Il'inets, A. M. \& Bikbau, M. Ya. (1990). Sov. Phys. Crystallogr. 35, 5456.

Ingber, L. (1989). Math. Comput. Model. 12, 967-973.
Ishida, H., Yamazaki, S., Sasaki, K., Okada, Y. \& Mitsuda, T. (1993). J. Am. Ceram. Soc. 76, 1707-1712.
Järvinen, M. (1993). J. Appl. Cryst. 26, 525-531.
Jost, K. H., Ziemer, B. \& Seydel, R. (1977). Acta Cryst. B33, 16961700.

Kirkpatrick, S., Gelatt, C. D. Jr \& Vecchi, M. P. (1983). Science, 220, 671-680.
Kriven, W. M. (1988). J. Am. Ceram. Soc. 71, 1021-1030.
McGinnety, J. A. (1972). Acta Cryst. B28, 2845-2852.
Midgley, C. M. (1952). Acta Cryst. 5, 307-312.
Miyazaki, M., Yamazaki, S., Sasaki, K., Ishida, H. \& Toraya, H. (1998). J. Am. Ceram. Soc. 81, 1339-1343.

Mumme, W. G., Hill, R. J., Bushnell-Wye, G. \& Segnit, E. R. (1995). N. Jahrb. Mineral. Abh. 169, 35-68.

Pawley, G. S. (1981). J. Appl. Cryst. 14, 357-361.
Rasberry, S. D. (1987). NIST Certificate for SRM640b Si powder.
Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71.
Smith, D. K., Majumdar, A. \& Ordway, F. (1965). Acta Cryst. 18, 787795.

Smyth, J. R. \& Hazen, R. M. (1973). Am. Mineral. 58, 588-593.
Toraya, H. (1986). J. Appl. Cryst. 19, 440-447.
Toraya, H. (2000). J. Appl. Cryst. 33, 95-102.
Toraya, H., Hibino, H. \& Ohsumi, K. (1996). J. Synchrotron Rad. 3, 75-83.
Udagawa, S. (1980). Proc. Gen. Meet. Cem. Assoc. Jpn, 34, 31-39. (In Japanese.)

Udagawa, S. \& Urabe, K. (1978). Proc. Gen. Meet. Cem. Assoc. Jpn, 32, 35-38. (In Japanese.)
Udagawa, S., Urabe, K., Natsume, M. \& Yano, T. (1980). Cem. Concr. Res. 10, 139-144.
Udagawa, S., Urabe, K., Yano, T., Takada, K. \& Natsume, M. (1979). Proc. Gen. Meet. Cem. Assoc. Jpn, 33, 35-38. (In Japanese.)
Visser, J. W. (1969). J. Appl. Cryst. 2, 89-95.
Yamazaki, S. \& Toraya, H. (2001). Powder Diffr. 16, 110-114.
Yano, T., Urabe, K., Ikawa, H., Teraushi, T., Ishizawa, N. \& Udagawa, S. (1993). Acta Cryst. C49, 1555-1559.

Young, R. A. (1995). The Rietveld Method, pp. 1-38. Oxford University Press.

[^0]: Correspondence e-mail: toraya@crl.nitech.ac.jp

[^1]: ${ }^{1}$ Supplementary data for this paper are available from the IUCr electronic archives (Reference: CK0012). Services for accessing these data are described at the back of the journal.

